

Vade-mecum des Traitements Mécano-Biologiques des déchets ménagers

© ASTEE, 2012

Photos: @ Angers Loire Métropole (couverture), E. Adler, VINCI Environnement, Fotolia.com et Depositphotos.com

ISBN 978-2-9586683-6-1 - 1ère édition, juin 2012

Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans l'autorisation des auteurs ou du Centre français d'exploitation du droit de copie (20, rue des Grands Augustins, 75006 Paris), est illicite et constitue une contrefaçon. Seules sont autorisées, d'une part, les reproductions strictement réservées à l'usage privé du copiste et non-destinées à une utilisation collective, et, d'autre part, les analyses et courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (loi du 1er juillet 119 – art. L 122-4 et L 122-5 et Code pénal art. 425).

Vade-mecum des Traitements Mécano-Biologiques des déchets ménagers

Edition 2012

Rédaction & synthèse

Emmanuel Adler, pôle «eaux & déchets» de l'Ecole des Ingénieurs de la Ville de Paris, Expert judiciaire près de la Cour d'Appel de Lyon

Liste des contributeurs au vade-mecum

Contributeurs

- Nicolas Fruteau, Ingénieur chef de projet chez PÖYRY, cabinet conseil spécialisé en traitements mécano-biologiques des déchets
- Philippe Thauvin, Ingénieur chargé de mission sur les traitements mécano-biologiques des déchets à l'ADEME
- Rémi Guillet, Ingénieur en chef, Conseil général de l'industrie, de l'énergie et des technologies
- Sebastien Cougoulic, Directeur de Aroma Consult, Cabinet Conseil spécialisé en gestion des odeurs
- Claire Vittoz, Ingénieure chef de projet chez Cadet International, Cabinet Conseil spécialisé en traitements mécano-biologiques des déchets
- Jean-Luc Martel, Ingénieur chef de projet spécialisé en traitements biologiques des boues et déchets organiques, Suez Environnement
- Bernard Morvan, spécialiste du compostage sur ordures ménagères résiduelles, jeune retraité du Cemagref
- Jean-Marie Rebillat, Responsable des relations institutionnelles, TIRU
- Hélène Fruteau, Docteure en biologie Methaconsult, cabinet assistance conseil et expertise en méthanisation
- Michèle Laounenan, Ingénieure au Cabinet Merlin, bureau d'ingénierie spécialisé en traitements mécano-biologiques des déchets
- Jean-Pierre Bugel, Ingénieur senior au Cabinet Merlin, bureau d'ingénierie spécialisé en traitements mécano-biologiques des déchets
- Séverine Ducottet, Ingénieure Exploitation spécialisée en valorisation agronomique, SYCTOM, agence métropolitaine des déchets ménagers (agglomération parisienne)

Relecteurs

- Charles Thiébaut, Chargé de mission Traitement biologique des déchets, DGPR/SPNQE/ BPGD, Ministère de l'Ecologie, du Développement Durable, des Transports et du Logement
- Philippe Wavrer, Ingénieur spécialisé en gestion des déchets, Unité Déchets & Matières Premières - Service Environnement & Procédés, Bureau de recherches géologiques et minières (BRGM)
- Guillaume Belhomme, Centre de documentation de l'Ecole des Ingénieurs de la ville de Paris

Sommaire

19

43

PRÉFACE

1.4. OBJECTIF DU DOCUMENT

ÉDITO	22
PARTIE A - Contexte des TMB CHAPITRE 1. PRÉAMBULE : POURQUOI UN VADE-MECUM DES TMB ?	27
1.1. QUE SONT LES TMB ?	28
1.1.1 Finalités des TMB	28
1.1.2 Contenu d'un procédé de TMB	29
1.1.2.1. Préparation mécanique	30
1.1.2.2. Traitements biologiques	31
1.1.2.3. Schéma de synthèse	32
1.1.2.4. Eléments historiques sur les TMB	32
1.2. LE GRENELLE DE L'ENVIRONNEMENT ET LES TMB	36
1.3. CONTEXTE DES TMB	38
1.3.1 Développement de la filière	38
1.3.2 Etat des lieux de la filière de compostage vis-à-vis des autres filières	39
1.3.3 Etat des lieux de la filière de méthanisation vis-à-vis des autres filières	40

CHAPITRE 2. QUAND CHOISIR LES TMB ?	45
2.1. CONTEXTE DE LA GESTION TERRITORIALE DES DÉCHETS	46
2.2. COMPLÉMENTARITÉ DES TMB AVEC LES AUTRES TRAITEMENTS	47
2.2.1 Avec le recyclage matière	47
2.2.2 Avec la valorisation thermique	47
2.2.3 Avec l'enfouissement	48
2.2.4 Importance des refus des TMB	48
2.2.5 Eléments de comparaison des deux grandes filières de TMB	49
,	
CHAPITRE 3. GESTION À L'AMONT ET EN ENTRÉE D'USINE	51
3.1. RESPONSABILITÉ DES COLLECTIVITÉS ET DÉCHETS ADMISSIBLES EN TMB	52
3.2. CARACTÉRISTIQUES DES OMR	53
3.2.1 Eléments de méthodologie et flux de déchets	53
3.2.2 Qualité des OMR	54
3.2.2.1. Synthèse nationale	54
3.2.2.2. Approche sur un territoire	56
3.3. TYPOLOGIE DES DÉCHETS ADMISSIBLES	57
3.3.1 Qualité des intrants biodégradables	57
3.3.2 Qualité des intrants compostables	57
3.3.3 Qualité des intrants méthanisables	58
3.3.4 Cas des déchets de l'assainissement	59
3.4. MÉTHODOLOGIE ET PARAMÈTRES À CONSIDÉRER POUR CADRER UN PROJET	60
3.5. ORGANISATION D'UNE PRÉ-COLLECTE ET DE LA COLLECTE	61

PARTIE B - Traitements mécaniques

CHAPITRE 4. PRÉTRAITEMENTS (EXTRACTION DES MATIÈRES RECYCLABLES)	65
4.1. RÉCUPÉRATION DES RECYCLABLES	66
4.2. RÉCUPÉRATION D'UNE FRACTION COMBUSTIBLE	67
CHAPITRE 5. VALORISATION DES COMBUSTIBLES SOLIDES DE RÉCUPÉRATION, DES RECYCLABLES ET DU STABILISAT	69
5.1. VALORISATION DES COMBUSTIBLES SOLIDES DE RÉCUPÉRATION (CSR)	70
5.1.1 Définitions	70
5.1.2 Gisement potentiel	71
5.1.3 Conditions et procédés d'extraction	72
5.1.4 Perspectives industrielles	73
5.2. GESTION DES RECYCLABLES (FERRAILLES, VERRE, PLASTIQUES)	74
5.3. GESTION DU STABILISAT (COMPOST NON NORMALISÉ)	75
PARTIE C - Traitements biologiques	

CHAPITRE 6. ENJEUX TECHNIQUES DU COMPOSTAGE DES OMR	79
6.1. EXIGENCES POUR LA PRODUCTION D'UN COMPOST NORMALISÉ	80
6.2. SCHÉMAS DE PROCESS DU COMPOSTAGE DES OMR	80
6.2.1 Le tube rotatif	81
6.2.2 Le criblage primaire	82

6.2.	L'affinage avant ou/et après maturation	82
6.2.	4 La fermentation et la maturation	84
6.2.	5 Le criblage fin	85
6.2.	6 Les autres postes	86
6.2.	7 Les process à éviter	86
	6.2.7.1. Le criblage en tête	86
	6.2.7.2. Le criblage primaire en fin de tube rotatif	86
	6.2.7.3. Le broyage en tête	87
	6.2.7.4. La table densimétrique sur compost frais	87
	6.2.7.5. Soufflerie ou aspiration des films plastiques	87
	6.2.7.6. L'overband en tête	87
	6.2.7.7. La collecte sélective intensive du verre des emballages	87
	6.2.7.8. Les techniques d'extrusion	88
6.2.	S Exemple de bilans matières	88
6.3. P	RÉ-TRAITEMENT SANS TUBE ROTATIF ET POST-TRAITEMENT	89
	PITRE 7. TRAITEMENT PAR COMPOSTAGE	91
СНА		
7.1. U	PITRE 7. TRAITEMENT PAR COMPOSTAGE	91
7.1. U	PITRE 7. TRAITEMENT PAR COMPOSTAGE JN ENSEMBLE DE DÉFINITIONS	91 92
7.1. U 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique	91 92 92
7.1. U 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples	91 92 92 93
7.1. U 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques	91 92 92 93 93
7.1. U 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques Examen des étapes et phases	91 92 92 93 93
7.1. U 7.1. 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS 1 Un processus biologique 2 Des objectifs multiples 3 Des mécanismes biochimiques 4 Examen des étapes et phases 7.1.4.1. Etape n°1 de fermentation (compostage intensif)	91 92 93 93 95
7.1. U 7.1. 7.1. 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques Examen des étapes et phases 7.1.4.1. Etape n°1 de fermentation (compostage intensif) 7.1.4.2. Etape n°2 de maturation mésophile (de 1 à plusieurs mois)	91 92 93 93 95 95
7.1. U 7.1. 7.1. 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques Examen des étapes et phases 7.1.4.1. Etape n°1 de fermentation (compostage intensif) 7.1.4.2. Etape n°2 de maturation mésophile (de 1 à plusieurs mois) Définition réglementaire	91 92 93 93 95 95 97
7.1. U 7.1. 7.1. 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques Examen des étapes et phases 7.1.4.1. Etape n°1 de fermentation (compostage intensif) 7.1.4.2. Etape n°2 de maturation mésophile (de 1 à plusieurs mois) Définition réglementaire Paramètres de contrôle	91 92 93 93 95 97 98 98
7.1. U 7.1. 7.1. 7.1. 7.1. 7.1.	PITRE 7. TRAITEMENT PAR COMPOSTAGE UN ENSEMBLE DE DÉFINITIONS Un processus biologique Des objectifs multiples Des mécanismes biochimiques Examen des étapes et phases 7.1.4.1. Etape n°1 de fermentation (compostage intensif) 7.1.4.2. Etape n°2 de maturation mésophile (de 1 à plusieurs mois) Définition réglementaire Paramètres de contrôle 7.1.6.1. Taux d'oxygénation de la matière	91 92 93 93 95 97 98 98

7.1.6.4. Température	99
7.1.6.5. Rapport C/N	100
7.2. CHAÎNE D'OPÉRATIONS DU PROCÉDÉ DE COMPOSTAGE	101
7.2.1 Décomposition en modules	101
7.2.2 Module 1 : réception	103
7.2.3 Module 2 : préparation	104
7.2.3.1. Pré-traitement biologique	105
7.2.3.2. Tri primaire	105
7.2.3.3. Affinage	106
7.2.4 Module 3 : Compostage intensif	107
7.2.4.1. Modules avec retournements mécaniques	107
7.2.4.2. Modules en aération forcée (positive/négative)	107
7.2.4.3. Technologies d'aération forcée en casiers et en couloirs	109
7.2.4.4. Technologies d'aération forcée en tunnels	111
7.2.4.5. Technologies d'aération forcée en conteneurs modulaires	112
7.2.4.6. Modules avec aération forcée et retournements mécaniques	113
7.2.5 Module 4 : Affinage	117
7.2.6 Module 5 : Maturation	117
7.2.7 Module 6 : stockage	118
CHAPITRE 8. TRAITEMENT PAR MÉTHANISATION	119
8.1. DÉFINITIONS	120
8.1.1 Un processus biologique	120
8.1.2 Des objectifs multiple	120
8.1.3 Les 3 produits issus de la méthanisation	121
8.1.3.1. Le biogaz	121
8.1.3.2. Le digestat	122
8.1.3.3. Les jus	123

8.2. MÉCANISMES BIOLOGIQUES	123
8.2.1 Phase d'hydrolyse	123
8.2.2 Phase d'acidogénèse	123
8.2.3 Phase d'acétogénèse	123
8.2.4 Phase de méthanogénèse	124
8.2.5 Syntèse	124
8.3. PARAMÈTRES FONCTIONNELS	125
8.3.1 Humidité	125
8.3.2 Température	126
8.3.3 Nature et nombre de réacteurs	127
8.4. RATIOS TECHNIQUES D'UNITÉS DE MÉTHANISATION EN FONCTIONNEMENT	129
8.5. ETAPES INDUSTRIELLES	130
8.5.1 Préparation de la matière organique avant méthanisation	131
8.5.2 Humidification et homogénéisation	131
8.5.3 Chauffage du réacteur	132
8.5.4 Alimentation du réacteur	132
8.5.5 Brassage du réacteur	132
8.5.6 Temps de séjour solide dans le réacteur	133
8.5.7 Gestion du digestat brut	133
8.6. ELÉMENTS DE MÉTROLOGIE	135
CHAPITRE 9. RECYCLAGE AGRONOMIQUE ET ENJEUX AGRICOLES	137
9.1. INTÉRÊTS DU COMPOST	138
9.1.1 Bénéfices du compost pour les sols et l'agriculture	138
9.1.2 Les besoins en compost des sols français	139

9.2. CADRE RÉGLEMENTAIRE DU RECYCLAGE ORGANIQUE	140
9.2.1 Le contexte politique favorable du recyclage organique	140
9.2.2 Réglementation des matières fertilisantes	142
9.2.3 Logique déchet et logique produit	144
9.2.4 Critères de la norme produit NFU44051	145
9.2.5 Contraintes environnementales des épandages	146
9.3. CARACTÉRISATION AGRONOMIQUE DES COMPOSTS	147
9.3.1 Paramètres de la fertilisation	147
9.3.2 Paramètres de maturité	148
9.3.3 Paramètres de l'activité biologique dans les sols	150
9.3.4 Gestion des lots et de l'échantillonnage	151
9.4. CLEFS DE LA RÉUSSITE POUR LE RECYCLAGE DU COMPOST URBAIN	151
9.4.1 Gérer les spécificités du monde agricole	151
9.4.2 Recommandations agronomiques	152
9.4.3 Qualité des composts d'OMR	154
CHAPITRE 10. GESTION ET VALORISATION DU BIOGAZ	155
10.1. OBJECTIFS	156
10.2. CARACTÉRISTIQUES DU BIOGAZ DE TMB	156
10.3. FILIÈRES DE GESTION DU BIOGAZ DE TMB	158
10.4. TRAITEMENTS DU BIOGAZ	159
10.4.1 Préparation et stockage du biogaz avant sa valorisation	159
10.4.1.1. Présence d'un gazomètre	159
10.4.1.2. Absence de gazomètre	160
10.4.1.3. Recommandations	161

10.4.2 Procédés de traitement du biogaz	161
10.4.2.1. Prétraitement du biogaz	161
10.4.2.2. Traitement poussé ou épuration du biogaz	161
10.4.2.3. Séchage et filtration du biogaz	162
10.4.2.4. Désulfuration du biogaz	162
10.4.2.5. Elimination des composés organo-halogènés et des siloxanes	163
10.4.2.6. Décarbonatation et enrichissement du biogaz	163
10.4.3 Compression du biogaz	165
10.4.4 Description des équipements de base	165
10.4.4.1. Torchère	165
10.4.4.2. Chaudière process	165
10.4.4.3. Unité de Cogénération	165
10.4.4.4. Groupe électrogène	166
10.4.4.5. Turbine à gaz (Cycle de Brayton)	167
10.4.4.6. Turbine à vapeur (cycle de Rankine)	168
10.4.4.7. Production de chaleur seule	169
10.4.4.8. Production d'électricité seule	169
10.4.4.9. Production de biométhane carburant	169
10.4.4.10. Injection de biométhane dans le réseau public de gaz naturel	169
10.5. AVANTAGES ET INCONVÉNIENTS DES FILIÈRES DE VALORISATION DU BIOGAZ	170
10.6. GESTION DU BIOGAZ ET ZONES ATEX	170

PARTIE D - Conditions de réussite d'un projet de TMB

CHAPITRE 11. MONTAGE D'UN PROJET DE TMB	175

11.2. JUSTIFICATION ET GRANDES ÉTAPES DE LA CHRONOLOGIE D'UN PROJET	176
11.2.1 Justifications du projet de TMB	176
11.2.2 Compatibilité du projet avec le contexte actuel	
et programmé	177
11.2.2.1. Avec le Plan Départemental d'Elimination des Déchets Ménagers et Assimilés	177
11.2.2.2. Avec le Plan Local d'Urbanisme	178
11.2.3 Caractéristiques de l'enquête publique	179
11.2.4 Chronologie d'un projet	182
11.3. RÉFLEXIONS SUR LE MONTAGE JURIDIQUE ET LE CHOIX DES PRESTATAIRES	184
11.3.1 Aperçu des enjeux et du contexte	184
11.3.2 Définition du programme	185
11.3.3 Conception technique de la filière	185
11.4. ENJEUX LIÉS À LA MISE EN SERVICE ET À L'EXPLOITATION	186
11.5. ENJEUX ÉCONOMIQUES	188
11.5.1 Structure des coûts moyens de fonctionnement	188
11.5.1.1. Poste amortissement	188
11.5.1.2. Poste consommables	189
11.5.1.3. Poste « personnel d'exploitation »	190
11.5.1.4. Poste « Maintenance et Gros Entretien Renouvellement »	190
11.5.1.5. Poste « Frais généraux et taxes »	190
11.5.1.6. Poste « Gestion des refus »	191
11.5.1.7. Poste « recettes »	192
11.5.1.8. Recommandations aux porteurs de projet	193
11.6. ENJEUX SOCIAUX	193

CHAPITRE 12. GESTION DES IMPACTS ENVIRONNEMENTAUX	195			
12.1. MAÎTRISE DES NUISANCES OLFACTIVES	196			
12.1.1 Enjeux liés aux odeurs				
12.1.2 Contexte réglementaire des installations classées	197			
12.1.3 Contexte réglementaire en matière d'hygiène et de sécurité	199			
12.1.4 Gestion des odeurs sur l'installation	200			
12.1.4.1. Méthodologie	200			
12.1.4.2. Mesures aérauliques	203			
12.1.4.3. Tests au fumigènes	204			
12.1.4.4. Mesures des débits de fuite odeurs	204			
12.1.5 Modélisation des nuisances olfactives	205			
12.1.5.1. Les modèles gaussiens	205			
12.1.5.2. Les modèles lagrangiens	205			
12.1.5.3. Les modèles eulériens	205			
12.1.6 Outils de gestion	206			
12.1.6.1. Le jury de riverains, observatoire des odeurs	206			
12.1.6.2. Le jury de nez professionnels selon la méthode normalisée NF X 43-103	207			
12.1.7 Traitements des gaz viciés	209			
12.1.8 Importance de la ventilation	212			
12.1.9 Emissions gazeuses	214			
12.2. RISQUES D'ENVOLS ET PLAN DE CIRCULATION	214			
12.2.1 Risques d'envols & propreté	214			
12.2.2 Plan de circulation	215			
12.3. GESTION DES EFFLUENTS LIQUIDES	217			
12.3.1 Avertissement				
12.3.2 Typologie et caractéristiques des effluents				
12.3.3 Recyclage et traitement des effluents				

12.4. ENJEUX LIÉS AUX GAZ À EFFET DE SERRE	221	
12.4.1 Définition du Bilan Carbone®		
12.4.2 Application au TMB	221	
CHAPITRE 13. CADRE RÉGLEMENTAIRE DES ICPE	223	
13.1. CADRE DES ICPE	224	
13.2. RUBRIQUES RELATIVES AUX UNITÉS DE TMB	224	
13.3. CADRE FISCAL POUR LA VENTE D'ÉNERGIE	228	
13.3.1 Vente d'électricité	228	
13.3.2 Vente de biogaz	228	
CONCLUSION	231	
LISTE DES ACRONYMES	233	
LEXIQUE	235	
BIBLIOGRAPHIE	251	

Préface du Président de l'ASTEE

Sans remonter ici à Réaumur¹ en 1750 ni même au début du XXème siècle, que rappelle fort opportunément cet ouvrage, l'histoire de la valorisation biologique des déchets ménagers est tout sauf un long fleuve tranquille. La France était en pointe dans les années 1980 dans le tri-compostage avec une première génération d'usines dont les composts étaient cependant de qualité inégale, et faisait de premiers essais très novateurs à l'époque de tri-méthanisation à Amiens, qui ont connu quelques difficultés techniques et peu de suites immédiates.

En Allemagne, le tri-compostage a été rapidement abandonné, pour laisser la place à un traitement mécano-biologique destiné à valoriser thermiquement ou par recyclage une fraction des ordures ménagères et à stabiliser biologiquement le reste, en vue de le mettre en décharge. La gestion séparée des biodéchets triés à la source, ainsi que la méthanisation à la ferme, se sont développés en parallèle.

En France, les démarches de progrès portées par l'ADEME, le CEMAGREF et quelques collectivités dans les années 90 ont abouti en 2004 avec l'installation de tri-compostage de Launay-Lantic. Les anciennes usines, dont le compost n'était plus aux normes, ont été soit abandonnées, soit rénovées, soit converties en installation de compostage de déchets verts

Les premiers essais de collecte séparée des biodéchets des ménages n'ont alors pas convaincu (faibles rendements hors déchets de jardin, coût, nuisances olfactives...). De nouvelles installations de tri-compostage ou tri-méthanisation ont été construites, comme alternatives aussi bien à l'incinération qu'à la collecte séparée des biodéchets des ménages. Actuellement, les usines de Traitements Mécano-Biologiques par tri-compostage et ou de tri-méthanisation produisant un compost de qualité satisfaisante se comptent encore sur les doigts des deux mains, mais les projets en cours de réalisation et en préparation sont nombreux.

Que d'années durant lesquelles, ne sachant comment crédibiliser vis-à-vis de la filière agricole les composts produits, nous avons continué à incinérer nos ordures ou à les mettre en décharge, alors même que leurs teneurs en métaux lourds ne cessaient de décroître et auraient dû favoriser les technologies biologiques et le retour au sol de cette matière organique!

Les refus de plus en plus fréquents des incinérateurs et des décharges par la population ont fort heureusement redonné une attractivité aux filières mécano-biologiques à l'évidence très cohérentes du point de vue du cycle de vie des produits. Cela a conduit à revisiter les technologies, pour être en mesure de faire revenir à la terre les produits organiques et de valoriser énergétiquement ce qui peut l'être dans des conditions satisfaisantes.

Mais voici qu'au moment de redresser la tête en France, cette filière bute sur de nouvelles difficultés. L'actualité en 2010-2011 aurait eu de quoi décourager l'ASTEE de poursuivre la production de cet ouvrage. Après les encouragements et les engagements du Grenelle, l'investissement de tous pour élaborer une charte nationale pour l'amélioration de la qualité des composts n'a cependant pas permis d'aboutir. Ceux qui considèrent que la séparation des biodéchets à la source est indispensable opposent un refus de principe aux Traitements Mécano-Biologiques.

D'autre part les parties prenantes n'ont pas pu trouver des compromis entre les exigences de contrôle et de traçabilité des uns et les contraintes opérationnelles et économiques des autres : tous ces débats n'ont été que le reflet franco-français des mêmes débats au niveau européen. Le développement de cette filière n'est guère encouragé, c'est un euphémisme, par la prise de position récente du groupe de travail européen « end-of-waste » piloté par le Joint Research Center, organe technique de la commission européenne. Celui-ci propose en effet d'écarter d'un possible accès au statut produit les composts et digestats élaborés à base de boues ou d'ordures ménagères résiduelles².

La contribution de l'ASTEE dans ce contexte perturbé est simplement de faire savoir ce que nous pouvons dire aujourd'hui des avancées majeures et récentes de ces filières :

- > à quels objectifs environnementaux et économiques peuvent-elles répondre ?
- > quelles sont les préconisations que nous pouvons faire pour l'emploi, l'organisation, les choix technologiques dans ce domaine difficile, très technique et en active innovation ?

Sans doute, en les connaissant mieux, trouvera-t-on leur véritable place dans les options entre lesquelles les pouvoirs publics et en particulier les collectivités territoriales ont à choisir, tant par l'encadrement réglementaire qu'en tant que maîtres d'ouvrage que, pour ces dernières, en tant qu'autorité organisatrice du service public des déchets dont elles ont la charge. Fassions-nous qu'en fournissant ce socle de connaissances nous aidions à ce que la diversité des situations concrètes soit bien comprise de tous, à ce que les choix locaux soient éclairés au mieux et que des pistes prometteuses ne soient pas précocement refermées!

Travailler sur ces filières et les faire progresser, ce n'est pas nier l'intérêt de la séparation et du compostage à la source, au niveau de petites communautés, ni s'opposer à la logique d'une collecte sélective. C'est offrir de la façon la plus professionnelle possible une plus large palette de solutions pour aider à sortir d'une situation dans laquelle la valorisation des biodéchets est en très grand retard, alors que le devenir de nos déchets reste un enjeu majeur.

Le présent ouvrage est modestement baptisé par ses auteurs « vade-mecum », mais c'est un travail extrêmement approfondi, digne de la longue série des guides publiés par la commission scientifique et technique « déchets et propreté » de l'ASTEE ces dernières années.

Le groupe de travail de l'ASTEE plus particulièrement dédié à la gestion biologique des déchets, sous l'impulsion enthousiaste d'Emmanuel Adler, répond ainsi à l'urgence

d'une meilleure compréhension de ces filières dont les progrès des performances ont été considérables ces dernières années, ainsi qu'au besoin de guider les praticiens à partir des retours d'expérience les plus récents. Il ouvre la possibilité aux acteurs locaux d'échanger sur leurs pratiques, avec, bien entendu, l'appui scientifique et technique de l'ASTEE.

Pierre-Alain Roche, Président de l'ASTEE

PRÉFACE 21

Edito des Présidents de METHEOR et de la FNCC

En deux décennies, le monde du déchet a connu une révolution des mentalités sans égal au regard des enjeux qui se dessinent à l'horizon 2020.

Prenant conscience de l'absolue nécessité d'extraire le maximum de matière valorisable, afin de lui donner une seconde vie, élus, techniciens et industriels, ont porté leurs efforts sur la mise en place de filières stables, cohérentes et répondant aux besoins actuels et futurs.

Après avoir nettement amélioré la valorisation énergétique, il s'agissait de s'attacher à recycler au mieux, les matières renouvelables. Si les emballages ont paru une priorité, certains « pionniers » ont souhaité s'intéresser à la matière organique.

Un temps utilisé dans les conditions techniques du moment, le tri-compostage (communément appelé TMB) a perdu de la crédibilité quand l'exigence de qualité des modes culturaux s'est faite jour. Un nouveau défi s'ouvrait alors aux partisans de la valorisation organique.

C'est ainsi que nous avons vu naître à travers la France de nouvelles unités de valorisation organique favorisant la production d'un compost de qualité, mais également de l'énergie ou du biogaz.

Après un long travail de compilation des techniques, d'évaluation et de rédaction, le Vademecum sur le traitement mécano-biologique voit le jour grâce à la ténacité de l'ASTEE. Ou'elle en soit ici remerciée.

Sous la houlette d'Emmanuel ADLER, un grand nombre de techniciens ont participé à la rédaction de cet ouvrage et il convient de souligner la qualité de leurs travaux. Car il n'était pas facile de faire la synthèse de ce qui se fait de mieux en la matière sans parti pris mais également sans concession.

La recherche de la qualité du produit fini a été le leitmotiv de leurs réflexions et, avouonsle, la modification incessante de la réglementation ne leur a pas facilité la tâche.

Puisse cet ouvrage démontrer que la filière que nous avons choisi de défendre, contre vents et marées, n'est pas ce que nos détracteurs décrivent.

Nous espérons qu'à travers ce document, de nombreux porteurs de projets se reconnaissent dans cette volonté qui nous anime, d'une qualité sans cesse plus grande, pour qu'enfin, nous puissions favoriser le retour au sol de TOUTE la matière organique, tout en agissant pour une plus grande autonomie énergétique grâce au biogaz extrait de nos unités.

Dominique Rodriguez,

Président de la FNCC, Fédération Nationale des Collectivités de Compostage

Guy Geoffroy,

Président de METHEOR, Association pour la méthanisation écologique des déchets organiques

DDITO 23